
Development of DACA
Enhancing Anti-Corruption Efforts in Kazakhstan through Digital Analysis of Public

Procurement Data

By

Roman Vassilchenko, Vadim Valov, Karen Ananyan

Department of Computer Engineering
Astana IT University

6B06102 Software Engineering
Supervisor: Master of Economic Sciences, Orynbek A.

June 2025
Astana

Abstract

Corruption in public procurement threatens transparency and fiscal responsibility in
Kazakhstan. We developed DACA (Digital Anti-Corruption Analysis), a scalable pipeline
that continuously monitors the full Goszakup contract stream.

DACA applies four rule-based indicators:
1) price inflation beyond market benchmarks;
2) excessive supplier concentration;
3) accelerated payment schedules;
4) prolific contract modifications.
Together, these indicators flag anomalous contracts.

The system adopts a microservice architecture: Go for data processing, PostgreSQL
for storage, MinIO for document archival, and a Vue.js dashboard with filtered search
and audit logs. Average processing latency is below 50 ms per contract.

Using mixed-methods evaluation with National Anti-Corruption Agency analysts—
detailed interviews plus iterative feedback—DACA flagged 160 high-risk contracts from a
set of 12 000. This reduced manual investigation time by 40 % and revealed previously
hidden collusion patterns.

These results demonstrate the power of data-driven monitoring to shift anti-corruption
work from retrospective audits to proactive risk management. Planned enhancements
include machine-learning classifiers, graph-based collusion detection, and enriched external
datasets. DACA offers a reproducible blueprint for embedding continuous accountability
into procurement systems.

Keywords: public procurement; corruption detection; anomaly detection; real-time
monitoring; rule-based analytics; data governance; digital transformation.

2

Glossary

API Application Programming Interface – A standardized method for systems
to communicate and exchange data.

Antikor Kazakhstan’s National Anti-Corruption Agency responsible for detecting
and prosecuting public-sector corruption.

BIN Business Identification Number – A unique legal identifier assigned to
companies in Kazakhstan.

CI/CD Continuous Integration / Continuous Deployment – Automated pipelines
for testing and releasing software.

DACA Digital Anti-Corruption Analysis – The system proposed in this thesis for
real-time anomaly detection in procurement.

ETL Extract, Transform, Load – A data-processing pipeline that collects, cleans,
and stores structured information.

FSD Feature-Sliced Design – A frontend architecture that organizes code into
feature-based modules.

gRPC Google Remote Procedure Call – A high-performance framework for mi-
croservice communication.

Goszakup The official public procurement portal of Kazakhstan, providing contract
metadata and APIs.

JSON JavaScript Object Notation – A lightweight format for structured data
interchange.

JWT JSON Web Token – A compact, URL-safe token format used for authenti-
cation.

2

ABSTRACT

MinIO A self-hosted, S3-compatible object storage system used to archive export
files in DACA.

Normalization
Statistical process of converting raw values to a common scale, such as
z-scores.

PostgreSQL A high-performance relational database used in DACA for storing contracts
and indicator results.

Prometheus A monitoring and alerting toolkit used to track service health and perfor-
mance.

REST Representational State Transfer – A conventional web API architecture
used in DACA.

Squirrel A Go library that simplifies programmatic construction of complex SQL
queries.

UML Unified Modeling Language – A standardized way of drawing system
architecture and relationships.

Vue.js A progressive JavaScript framework used to develop DACA’s interactive
dashboard interface.

GDP Gross Domestic Product - The total monetary value of all final goods
and services produced within a country’s borders over a specified period,
commonly used as a broad indicator of economic performance and growth.

OECD Organisation for Economic Co-operation and Development.

3

Dedication and Acknowledgements

This dedication is made in honor of those who have supported and guided us throughout
this project.

We express our sincere gratitude to our scientific supervisor, Alibek Sarsembekovich,
whose introduction to the Antikor team was invaluable. His guidance has been a corner-
stone of our work.

Special thanks go to Dauren Mamirkulov, the primary collaborator with whom we
work and present our project. As an analyst at Antikor, he provided us with the technical
specifications, explained the indicators, and shared other essential insights that have
significantly enriched our project.

We also extend our heartfelt appreciation to Aisulu Bolatovna, Dauren’s supervisor,
who meticulously reviews our work and provides constructive feedback, contributing
greatly to the improvement of our project.

4

List of Figures

Figure Page

3.1 End-to-end data flow across framework layers 13

5.1 Use-Case Diagram . 29

1 Authorization Screen . 50
2 First Indicator Screen . 51
3 Second Indicator Screen . 51
4 Third Indicator Screen . 52
5 Fourth Indicator Screen . 52
6 Dark Theme Mode . 53
7 Sort Options in First Indicator . 53
8 Ask for Unload Page . 54
9 Unload Page . 54
10 User Profile . 55

6

List of Tables

Table Page

3.1 Framework layers and primary responsibilities 11
3.2 Implemented corruption indicators . 12
3.3 DACA vs EOZ feature comparison . 14

4.1 Key Fields Retrieved from Goszakup API 17
4.2 Preprocessing Workflow Steps . 18
4.3 Corruption Risk Indicators Used in DACA 19
4.4 Technology Stack Overview . 21

5.1 MVP Feature Matrix . 24
5.2 Service Inventory . 25

25table.caption.22
6.1 Technology Evaluation Criteria . 31
6.2 Backend Language Comparison . 32
6.3 Frontend Framework Comparison . 32
6.4 Relational Database Comparison . 33
6.5 Object Storage Comparison . 33
6.6 Deployment Approach Comparison . 34

8.1 Hypotheses versus observed outcomes . 39

7

Table of Contents

Abstract 2

Glossary 2

Dedication and Acknowledgements 4

List of Figures 6

List of Tables 7

1 Introduction 1
1.0.1 Research Gap . 2
1.0.2 Research Novelty . 2
1.0.3 Research Hypotheses . 3
1.0.4 Research Questions . 4

2 Literature Review 6
2.1 International Frameworks and Normative Guidelines 6
2.2 Digital Transformation in Public Procurement 7
2.3 Data-Driven Approaches to Corruption Detection 7
2.4 Machine Learning and Advanced Analytics 8
2.5 Societal Impact of Digital Governance 8
2.6 Application in Kazakhstan’s Public Procurement 9
2.7 Conclusion . 9

3 Conceptual Framework 10
3.1 Core Problem Definition . 10
3.2 Key Framework Components . 11

8

TABLE OF CONTENTS

3.2.1 Data Collection Layer . 11
3.2.2 Processing Layer . 11
3.2.3 Analytics Layer . 12
3.2.4 Presentation Layer . 12

3.3 Component Interaction . 12
3.4 Design Rationale . 13
3.5 Framework Limitations . 14
3.6 Analysis of Comparable Systems . 14
3.7 Summary . 15

4 Methodology and Technical Approach of the Work 16
4.1 Objective and Structure . 16
4.2 Data Collection . 17
4.3 Data Processing and Preprocessing . 17
4.4 Corruption Risk Indicators . 18
4.5 Indicator Evaluation Rules . 19
20section.4.6
4.7 Expert Feedback and Human Oversight 21
4.8 System Architecture and Implementation 21

5 MVP, UML Diagrams, and Architecture of the Project 23
5.1 Minimum Viable Product (MVP) Features 23
5.2 System Architecture . 25
25section.5.3
5.4 Excel Unload Processing Service . 27
5.5 UML Diagrams (References Only) . 29
5.6 Annotations and Explanation . 30
5.7 Closing Remarks . 30

6 Technology Comparison and Technology Used 31
6.1 Evaluation Criteria . 31
6.2 Backend Technologies . 32

6.2.1 Comparison: Go vs. Node.js . 32
6.3 Frontend Frameworks . 32
32subsection.6.3.1
6.4 Database Systems . 33

9

TABLE OF CONTENTS

33subsection.6.4.1
6.5 Cloud Storage and Data Processing . 33
33subsection.6.5.1
6.6 Containerization and Deployment . 34

6.6.1 Comparison: Docker + GitHub Actions vs. Traditional Deployment 34
6.7 Rationale Behind Technology Choices . 34

7 Effective Implementation and Deployment of the Project 35
7.1 User Interface and Visual Representations 35
7.2 CI/CD: Build & Publish to GitHub Container Registry 35
7.3 Closing Remarks . 37

8 Results 38
8.1 Experimental Setup . 38
8.2 Hypothesis Validation . 39

8.2.1 Latency Measurements . 39
8.2.2 Detection Coverage . 39

8.3 Additional Operational Findings . 40
8.4 Discussion . 40
8.5 Threats to Validity . 41

9 Conclusion 42
9.1 Summary of Findings . 42
9.2 Contribution to Knowledge and Practice 43
9.3 Limitations . 44
9.4 Final Reflections . 44

10 Future Work and Development Perspectives 45
10.1 Algorithmic Extensions . 45
10.2 Data-Source Expansion . 45
10.3 Platform Hardening . 46
10.4 Policy and Ecosystem Integration . 46
10.5 Long-Term Vision . 46

Bibliography 47

50

10

TABLE OF CONTENTS

Full-Size Screenshots of the DACA System . 50

11

Chapter 1

Introduction

Corruption in public procurement is among the most persistent threats to good governance
worldwide. The danger is particularly severe in developing and transitional economies,
where regulatory frameworks may be less robust, enforcement capacity is limited, and
market-entry barriers are high. In Kazakhstan—where public contracts account for over
6% of GDP (roughly 4 trillion KZT annually)—irregularities such as unjustified price
inflation, highly concentrated supplier selection, accelerated payment schedules, and
unrealistically compressed completion times undermine economic development, distort
market competition, and erode public trust. According to Transparency International’s
2023 Corruption Perceptions Index, Kazakhstan scores 36/100 and ranks 106th out of
180 countries, highlighting entrenched integrity challenges in its procurement system [1].
OECD studies estimate that corruption inflates procurement costs by 10–25%, imposing
a substantial fiscal burden and diverting resources from critical public services.

Since the launch of the Goszakup platform in 2016—which mandates online tendering
for all state bodies—Kazakhstan has published over 660 000 contracts totaling more
than 3 GB of procurement data [2]. However, existing oversight tools remain largely
retrospective, relying on manual PDF reviews or annual CSV snapshots that fail to
support the high velocity of live tenders (new contracts posted every 30 seconds on
average).Analysts lack integrated, multi-indicator dashboards that can quickly assess and
prioritize risk in near real-time, forcing them into labor-intensive workflows and delaying
investigation of high-value anomalies.

1

CHAPTER 1. INTRODUCTION

1.0.1 Research Gap

Despite a decade of scholarship on procurement integrity, no prior study has produced a
near-real-time, end-to-end detection pipeline that

(1) ingests Kazakhstan’s complete Goszakup stream at production scale,

(2) computes and correlates multiple red-flag indicators—price inflation, supplier con-
centration, payment velocity, underbidding—at the contract level, and

(3) integrates findings into an analyst-oriented, audit-ready dashboard with full export
and API hooks.

Most existing systems either focus on a single heuristic (e.g. price deviations) or require
manual data exports for offline analysis, offering little support for continuous monitoring
or cross-indicator interaction in live procurement environments. This gap constrains
anti-corruption agencies to periodic audits, leaving high-risk tenders undetected until
significant value has already been committed.

1.0.2 Research Novelty

This thesis presents DACA (Digital Anti-Corruption Analysis)—the first national-scale
analytics platform for public procurement in Kazakhstan that unifies the following four
innovations, each specifically designed to overcome endemic shortcomings in retrospective
oversight, data fragmentation, and operational scalability:

• A Go-based microservice layer for receiving and handling data, sustaining > 10×
peak production load, processing over 1 000 contracts per minute with median
end-to-end latency under 50 ms. This is the first known implementation in the
region capable of consuming the full live Goszakup stream with minimal delay.
Unlike systems dependent on batch-mode CSV snapshots or PDF parsing, DACA
uses asynchronous GraphQL queries with cursor-based pagination and idempotent
storage, enabling real-time data collection, high-availability, and resilience against
schema drift.

• A hybrid risk-scoring engine that merges four rigorously defined rule-based indicators
with statistical normalization and weighted aggregation, calibrated against real

2

CHAPTER 1. INTRODUCTION

contract data from 2016–2025. Each contract is assessed using a composite index
derived from binary-encoded indicators (e.g., underbidding, partner concentration)
that are z-score normalized across data collected over multiple years. The risk index
reflects both the frequency and extremity of anomalies, enabling prioritization
based on severity and statistical rarity—a methodological leap beyond traditional
threshold triggers used in national portals.

• An interactive Vue 3 dashboard offering contract-level indicator by region, advanced
filtering, role-based access control, and signed-URL exports stored in MinIO. The
frontend architecture is informed by FSD (Feature-Sliced Design), ensuring that
every interface element aligns with investigative workflows. For example, auditors
can dynamically pivot views from contract metadata to peer comparisons and
download filter-specific Excel exports, supported by secure URL tokens and full
audit traceability. No existing e-procurement tool in Kazakhstan provides this
degree of interaction, context sensitivity, or regional scoping.

• A fully reproducible Infrastructure-as-Code (IaC) deployment recipe via Docker
Compose and GitHub Actions, Prometheus-monitored health checks. Operational
reproducibility is ensured by containerised services with stateless pipelines and
metrics instrumentation. CI/CD pipelines enforce image validation via GitHub
Actions, signed releases, and rollout confirmation hooks, guaranteeing parity between
development and production. The deployment strategy enables local agencies to
adopt the platform with minimal DevOps burden.

No earlier work combines continuous, sub-second freshness; multi-indicator analytics;
and investigator-centred user experience within Kazakhstan’s specific legal and operational
environment. DACA advances both the technical state-of-the-art and the institutional
capacity for proactive, real-time integrity monitoring of government spending.

1.0.3 Research Hypotheses

Guided by our objectives, the study tests three concrete hypotheses:

H1 Performance: The data processing pipeline achieves a median end-to-end latency
below 100 ms per contract.

3

CHAPTER 1. INTRODUCTION

H2 Detection Volume: The four corruption indicators—price inflation, supplier concentra-
tion, accelerated payments, and underbidding—flag at least 150 high-risk contracts
in the 2016–2025 dataset.

H3 Analyst Efficiency: The DACA dashboard reduces analysts’ contract-review time by
at least 30% compared to the baseline PDF-centric workflow.

1.0.4 Research Questions

To evaluate these hypotheses, the thesis addresses four guiding questions:

1. RQ1: Which system architecture sustains < 100 ms contract-level processing while
ingesting the full live Goszakup feed?

2. RQ2: Which combination of corruption indicators most effectively uncovers high-risk
tenders in Kazakhstan?

3. RQ3: How does the DACA interface reshape analysts’ investigative workflow,
decision accuracy, and time-on-task?

4. RQ4: What operational constraints (data-quality issues, API rate limits, legal
compliance) arise during national-scale deployment, and how can they be mitigated?

The primary goal of this research is to design, implement, and practically evaluate an
innovative, scalable technological solution that shifts Kazakhstan’s anti-corruption efforts
from retrospective audits to proactive, data-driven risk management. Specific objectives
include:

1. systematically identify and quantify recurrent corruption patterns in the Goszakup
stream;

2. develop and validate software capable of automated risk detection and prioritization;

3. test the system with the National Anti-Corruption Agency using real users and
measure operational impact;

4. deliver data-backed policy recommendations and deployment guidelines to regula-
tors; and

4

CHAPTER 1. INTRODUCTION

5. assess the platform’s adaptability and scalability for broader regional or sectoral
roll-outs.

The object of research is Kazakhstan’s public-procurement ecosystem—its legal frame-
work, procedural workflows, and transaction history. The subject of research is the
constellation of corruption indicators within these processes and the digital methodolo-
gies for their detection. Grounded in a multidisciplinary theoretical framework—public-
administration theory, principal–agent models, institutional economics, and information-
systems adoption—the study employs a mixed-methods design combining quantitative
contract analysis, qualitative expert interviews, iterative prototype feedback, and case-
study evaluation of flagged incidents.

5

Chapter 2

Literature Review

Corruption in public procurement erodes economic efficiency, public-sector legitimacy,
and citizens’ confidence in government. The OECD estimates that up to 20–30% of the
value of public contracts can be lost to corrupt practices, leakages, and inefficiencies [3].
Faced with these extremely high figures, governments worldwide have begun to deploy
digital technologies—particularly large-scale data analytics and machine learning—to
reveal hidden patterns of fraud and collusion in public-spending data. This chapter
reviews the legal foundations, technological advances, and socio-economic insights that
collectively inform the Digital Anti-Corruption Analysis (DACA) project, an integrity
platform specifically designed to Kazakhstan’s procurement ecosystem.

2.1 International Frameworks and Normative Guidelines

Anti-corruption efforts operate within a well-defined legal architecture. The OECD Anti-
Bribery Convention [3] requires signatory states to criminalise bribery of foreign public
officials, introduce corporate liability, and exchange evidence across borders. Parallel to
this “supply-side” focus, the United Nations Convention against Corruption (UNCAC)
[4] offers the most comprehensive, globally endorsed international agreement; it spans
preventive measures, criminalisation, asset recovery, and technical assistance, thereby
covering the “demand side” as well. Monitoring implementation remains essential: the 2023
Corruption Perceptions Index (CPI) positions Kazakhstan in the lower half of the global
ranking with a score of 36/100, signalling persistent structural risks in public procurement
[1]. These instruments collectively establish baseline obligations—transparency, disclosure,
open competition—against which digital innovations must be measured.

6

CHAPTER 2. LITERATURE REVIEW

2.2 Digital Transformation in Public Procurement

Digitally enabled procurement frameworks promise to translate legal norms into day-to-
day practice. The World Bank’s Procurement Framework lays out a modernised policy that
emphasises value-for-money, proportionality, and open contracting standards [5]. Private-
sector research further shows how big-data systems collect different types of contract data,
standardize it, and identify fraud patterns that traditional sample-based audits often miss
[6]. Quantitative evidence is accumulating: in South Korea, the nationwide Korea ON-line
E-Procurement System (KONEPS) reduced processing time by 75% and cut tendering
costs by 8% [7]. Across the European Union, open-contracting portals correlate with
higher bid counts and lower single-bid awards, indicating healthier competition [8]. Even
asset-heavy sectors—airport authorities, for instance—report significant efficiency gains
after moving from fax-based purchase requests to integrated digital tendering modules
[9]. These success stories motivate Kazakhstan’s ongoing e-government reforms.

2.3 Data-Driven Approaches to Corruption Detection

Contemporary anti-corruption analytics transform raw procurement records into struc-
tured indicators through three complementary techniques: statistical anomaly detection,
relational network analysis, and rule-based scoring [10]. First, anomaly detection methods
flag contracts whose key attributes—such as price deviations or bid timing—fall outside
expected distributions. Kawai and Yamaguchi demonstrate that identifying statistically
improbable bid spreads in construction auctions serves as an effective early warning
for collusion, with elevated detection rates when combined with temporal filters [11].
Second, network analysis uncovers clusters of recurrent relationships among buyers,
suppliers, and intermediaries: Fazekas and Tóth employ relational graphs to reveal “state
capture” dynamics in Hungary by linking repeated closed procedures, accelerated pay-
ment schedules, and overlapping ownership structures [12]. Third, systematic reviews
confirm the effectiveness of hybrid rule-based engines: Janssen and van Heuvelhof’s meta-
analysis shows that combining multiple red-flag signals—such as underbidding, supplier
concentration, and frequent contract changes—can reduce investigators’ case backlogs
by up to 30%, allowing scarce audit resources to focus on the highest-risk tenders [13].
Together, these approaches form the methodological foundation for DACA’s composite
risk-scoring pipeline, which integrates normalized anomaly metrics, graph-based features,
and domain-specific rules to prioritize contracts in near real time. By unifying statistical,

7

CHAPTER 2. LITERATURE REVIEW

network, and heuristic perspectives, DACA aligns with best practices in the literature
and advances state-of-the-art detection for live procurement streams.

2.4 Machine Learning and Advanced Analytics

Machine-learning models push the frontier further by learning complex non-linear patterns.
The gradient-boosting library XGBoost remains a workhorse due to its ability to handle
sparse, high-cardinality categorical variables typical of procurement data [14]. However,
contracts rarely exist in isolation; they form dense networks of buyers, suppliers, and
subcontractors. Graph Neural Networks (GNNs) effectively encode these relationships
and have achieved state-of-the-art results on collusion-detection tasks [15]. Di Bella et al.
apply graph-based kernels to flag suspiciously overlapping bidder communities in Italian
municipal tenders [16]. Hybrid pipelines that fuse GNN features with gradient-boosting
probabilities have reached Area Under the Curve (AUC) values exceeding 0.93 on complete
national datasets from Brazil and Portugal [17; 18]. Such predictive gains translate into
operational impact: an airport company reported a 35% reduction in manual screening
hours after introducing an ML-powered risk-ranking queue during a real-world test [9].

2.5 Societal Impact of Digital Governance

Digital procurement platforms transform static, opaque contracting processes into dy-
namic, transparent ecosystems. By making contract and payment data openly accessible,
these systems empower civil-society watchdogs—NGOs, investigative journalists, and
individual citizens—to detect irregularities and demand accountability [19]. Brown and
Duguid’s socio-technical framework explains this effect: when stakeholders can readily
observe government transactions, the social and reputational costs of corrupt behavior rise,
creating a stronger deterrent against petty graft and abuse [20]. Research by Johnson and
Dykstra shows that jurisdictions publishing payment data within ten days of disbursement
achieve significantly shorter settlement delays and far fewer contested invoices compared
to those with slower disclosure practices [21]. Informed by these findings, DACA’s design
pairs its internal risk-scoring dashboard with a public-facing module, ensuring that
near-real-time alerts and summary reports are visible not only to analysts but also to
external oversight bodies and the wider public—thereby reinforcing transparency, boosting
deterrence, and fostering trust in the procurement process.

8

CHAPTER 2. LITERATURE REVIEW

2.6 Application in Kazakhstan’s Public Procurement

Kazakhstan launched the Goszakup portal in 2016, mandating that virtually all state
entities conduct procurement online [2]. The portal exports contract metadata—amounts,
additional contracts, BIN identifiers—via an open API, providing a strong foundation
for large-scale analytics. Yet challenges persist: a small group of suppliers secures a
disproportionate share of awards; contract changes remain frequent; and aggressive under-
bidding occasionally hides later price increases. DACA addresses these issues by ingesting
Goszakup data hourly, applying the red-flag indicators derived from global literature,
and generating interactive heat maps for auditors. The platform’s design aligns with
international agreement obligations to prevent bribery [3], leverages the World Bank’s
digital-procurement principles [5], and incorporates the latest ML advances for relational
anomaly detection [15].

2.7 Conclusion

The literature demonstrates a virtuous convergence: international norms establish the
“why”, digital transformation delivers the “how”, and machine-learning analytics optimise
the “where” by pinpointing high-risk contracts in real time. These strands collectively
inform DACA’s architecture, ensuring that Kazakhstan’s anti-corruption toolkit remains
both context-specific and globally benchmarked.

9

Chapter 3

Conceptual Framework

This chapter articulates the theoretical foundations and high-level design of the Digital
Anti-Corruption Analysis (DACA) platform. The architecture follows a layered approach:
each tier performs a specific, well-defined function and exposes clear interfaces to the
next, enabling modular upgrades without rewriting the full system.

3.1 Core Problem Definition

Kazakhstan’s public sector allocates approximately 6 % of GDP to competitive procure-
ment, yet audit reports persistently uncover inflated prices, hasty approvals, and repeated
use of single suppliers [3]. Existing oversight methods—manual sampling and heuristic
audits—struggle with the scale (millions of contracts since 2016) and speed (new tenders
every 30 s)[3]. The project’s overarching goal is twofold:

1. Scalability: Automatically load and process the entire national dataset within
minutes of publication.

2. Actionability: Transform raw contract data into intuitive red-flag dashboards specif-
ically designed for investigators.

To meet these goals, DACA introduces a four-layer conceptual architecture, summa-
rized in Table 3.1.

10

CHAPTER 3. CONCEPTUAL FRAMEWORK

3.2 Key Framework Components

Table 3.1: Framework layers and primary responsibilities

Layer Technologies Purpose and Deliverables
Data Collection Go fetcher, Goszakup

GraphQL
Retrieves raw JSON for every contract
(2016–present), including customer/sup-
plier BIN, amounts, additional contracts,
and payments. Applies schema validation
and quarantines anomalous records.

Processing Go ETL, PostgreSQL
15

Normalizes monetary fields, enriches with
FX rates, constructs time windows, and
persists data into a star-schema ware-
house. Supports time-series queries and
retroactive updates.

Analytics Go microservice Computes four rule-based indicators:
>15% price hikes, <5-day payments,
>70% supplier concentration, and <70%
underpricing. Persists results to Post-
greSQL for use by dashboards and audit
APIs.

Presentation Vue 3, Excel export,
MinIO S3

Displays filtered tables; logs exports with
metadata; supports region-specific au-
thentication and audit trails.

3.2.1 Data Collection Layer

Scope: Collects every contract, contract change, and payment record from the Goszakup
public API (>30 fields) in near-real-time. Volume: Historical backfill includes 660 000
contracts (3 GB JSON). Validation: The fetcher checks BIN format, ISO date compliance,
and non-negative values, isolating any anomalies into a quarantine queue. This ensures
high-trust inputs for downstream processing.

3.2.2 Processing Layer

Raw JSON data is transformed into denormalized fact/dimension tables (see Figure ??).
This includes duplicate detection via content hashes, structured timeline assembly, and
contract lifecycle reconstruction. All tasks are containerized and idempotent, allowing
consistent reruns when additional contracts arrive late.

11

CHAPTER 3. CONCEPTUAL FRAMEWORK

3.2.3 Analytics Layer

The initial implementation includes four rule-based indicators, with future support for
ML/NLP extensions.

Table 3.2: Implemented corruption indicators

Code Business Logic Rationale
I1 ∆ price > 15% Upward price of additional contracts

may reflect post-award kickbacks or un-
justified changes in scope.

I2 Partner share > 70% Frequent deals with the same supplier
suggest favoritism, bid rotation, or in-
sider arrangements.

I3 Payment delay < 5 days Rapid payments may bypass normal
checks, indicating prearranged or collu-
sive contracting.

I4 Final price < 70% of
budget

Extreme underbidding (dumping) can
mask predatory pricing or plans for post-
award of additional contracts.

Each output includes a severity score for ranking, not just binary flags.

3.2.4 Presentation Layer

The Vue dashboard features:

• Table view: displays full contract lifecycle, additional contracts, and peer compar-
isons.

• Export: Excel and CSV exports with signed URLs via MinIO, tagged with applied
filters.

Role-based access ensures regional users only see their jurisdiction, while HQ retains
national oversight.

3.3 Component Interaction

Figure 3.1 illustrates the data pipeline. A contract JSON ingested at t0 becomes searchable
on the dashboard within 90 s.

12

CHAPTER 3. CONCEPTUAL FRAMEWORK

Figure 3.1: End-to-end data flow across framework layers

3.4 Design Rationale

1. Layered architecture enables domain teams (data collection, data engineering,
analytics, UI) to iterate independently—following DevOps principles.

13

CHAPTER 3. CONCEPTUAL FRAMEWORK

2. Feature-sliced design (FSD) segments the front-end into features, entities, and
shared, minimizing merge conflicts.

3. Cloud-native deployment with Docker and GitHub Actions ensures reproducible
CI/CD. Docker Compose aligns staging and production environments.

4. Extensibility: All analytics modules follow a common gRPC contract. New detectors
(e.g., GNNs for bid-rigging) can be plugged in without altering ETL logic.

3.5 Framework Limitations

• Data scope: The platform only accesses publicly available Goszakup data; classified
tenders are out of scope.

• Indicator coverage: Rule-based methods detect common patterns but miss subtle
schemes (e.g., subcontractor networks) until future ML integration.

• Data integrity: The system inherits inconsistencies (e.g., misreported sums, back-
dated changes) from the upstream API. Periodic reconciliation with audit-verified
records is needed.

3.6 Analysis of Comparable Systems

Table 3.3 compares DACA with EOZ, Kazakhstan’s multi-platform aggregator.

Table 3.3: DACA vs EOZ feature comparison

Capability DACA EOZ
Real-time API data collection ✓ ✗

Rule-based corruption flags ✓ ✗

Multi-platform price search ✗ ✓

Public export / audit log ✓ Limited

EOZ (Edinoe Okno Zakupok) excels at aggregating visibility across platforms but
lacks real-time analytics or risk profiling. DACA complements EOZ by focusing on red-flag
detection for regulators.

14

CHAPTER 3. CONCEPTUAL FRAMEWORK

3.7 Summary

The conceptual framework outlines a modular and extensible pipeline from raw procure-
ment data to actionable insight. Each layer—collection, processing, analytics, presenta-
tion—is tied to specific technologies and MVP deliverables, facilitating future upgrades
and minimizing coupling across components.

15

Chapter 4

Methodology and Technical Approach of the
Work

This chapter presents the comprehensive methodological pipeline underlying the DACA
system, from its high-level objectives through data collection, preprocessing, corruption-
risk detection, expert feedback integration, risk scoring, and final deployment. We illustrate
every step with formal definitions, full mathematical formulas, and structured tables to
ensure clarity and reproducibility.

4.1 Objective and Structure

• Primary Objective: To detect and quantify high-risk procurement contracts in
Kazakhstan by applying a suite of rule-based and statistical indicators, and to
deliver actionable intelligence via a scalable software platform.

• Overall Structure:

1. Define the set of corruption-risk indicators and their formal criteria.

2. Extract raw contract data from the Goszakup API.

3. Preprocess data with cleaning, normalization, and feature engineering.

4. Apply detection rules and compute continuous metrics.

5. Normalize and aggregate indicator outputs into composite risk scores.

6. Incorporate expert feedback loops for threshold calibration.

7. Deploy the complete system within a microservice architecture.

16

CHAPTER 4. METHODOLOGY AND TECHNICAL APPROACH OF THE WORK

4.2 Data Collection

Data are ingested in real time via the public Goszakup GraphQL API (https://www.
goszakup.gov.kz). A dedicated ingestor service issues a query every second, using cursor-
based pagination to respect rate limits and ensure no contracts are missed.

Table 4.1: Key Fields Retrieved from Goszakup API

Field Description
contract_id Unique identifier assigned by the portal.
customer_bin Business Identification Number of the contracting

authority.
supplier_bin Business Identification Number of the awarded

supplier.
planned_amount Budgeted contract value (in KZT) as initially

advertised.
final_amount Concluded contract value after bidding and addi-

tional contracts.
contract_date ISO-formatted date of contract signing (YYYY-

MM-DD).
payment_date ISO-formatted date when payment was recorded.
additional contracts Array of objects: each with change_date and

change_amount.
other metadata ... Additional fields (procurement method, region,

commodity code, etc.).

4.3 Data Processing and Preprocessing

Once raw JSON is ingested, an ETL pipeline performs the following steps:

17

https://www.goszakup.gov.kz
https://www.goszakup.gov.kz

CHAPTER 4. METHODOLOGY AND TECHNICAL APPROACH OF THE WORK

Table 4.2: Preprocessing Workflow Steps

Step Purpose and Operations
Missing-value filtering Remove records where customer_bin, supplier_bin,

or amounts are null.
Type conversion Cast monetary strings to FLOAT; parse dates to

DATE.
Get KZT amounts from
API
Derived feature computa-
tion • Payment delay d = payment_date −

contract_date (in days).

• Contract change sum Cadd =∑
i change_amounti.

• Underbid ratio δ4 = (Pplanned − Pfinal)/Pplanned.

• Partner share counts NBS per (buyer, supplier)
pair.

Deduplication Eliminate identical contract_id duplicates using SHA-
256 hash of JSON payload.

Entity linking Join customer and supplier tables on contract_id to
enable partnership metrics.

All clean records are persisted in a star-schema PostgreSQL warehouse, with parti-
tioning on contract_date YEAR for query performance.

4.4 Corruption Risk Indicators

DACA implements four primary indicators, each formally defined below:

18

CHAPTER 4. METHODOLOGY AND TECHNICAL APPROACH OF THE WORK

Table 4.3: Corruption Risk Indicators Used in DACA

Code Name Trigger Condition
I1 Contract Amount Increase Sum of additional contracts Cadd exceeds

15% of original contract Cmain.
I2 Partnership Intensity Counterparty accounts for > 70% of to-

tal contracts for either buyer or supplier.
I3 Accelerated Payment Payment delay d < 5 days from contract

signing.
I4 Excessive Underbidding Underbid ratio δ4 > 30%, i.e. final price

is more than 30% below the planned bud-
get.

4.5 Indicator Evaluation Rules

Each indicator is computed as follows:

I1 — Contract Amount Increase

Cmain = planned_amount, Cadd =
k∑

i=1
change_amounti.

Define
δ1 = Cadd

Cmain
× 100%.

Flag if
δ1 > 15%.

I2 — Partnership Intensity

Denote:
NBS = #{contracts between buyer B and supplier S},

NB = #{contracts of buyer B}, NS = #{contracts of supplier S}.

Compute percentages:

PBS = NBS

NB

× 100%, PSB = NBS

NS

× 100%.

Flag if either
PBS > 70% or PSB > 70%.

19

CHAPTER 4. METHODOLOGY AND TECHNICAL APPROACH OF THE WORK

I3 — Accelerated Payment

Let
d = (payment_date − contract_date) in days.

Flag if
d < 5.

I4 — Excessive Underbidding

δ4 = Pplanned − Pfinal

Pplanned
× 100%.

Flag if
δ4 > 30%.

4.6 Normalization and Composite Scoring

To synthesize the four indicators into a single risk score, we perform:

1. Binary encoding: For each contract and indicator j, define

xj =

1, if indicator j is flagged,

0, otherwise.

2. Z-score normalization: Compute

zj = xj − µj

σj

,

where µj and σj are the mean and standard deviation of xj across all available contract
data.

3. Weighted aggregation: Assign expert-driven weights βj (sum to 1). The composite
risk index for a contract is

Z =
4∑

j=1
βj zj.

Higher Z indicates greater overall corruption risk.

20

CHAPTER 4. METHODOLOGY AND TECHNICAL APPROACH OF THE WORK

4.7 Expert Feedback and Human Oversight

We conducted 21 iterative review sessions with anti-corruption analysts and regional
officers:

• Workshops: Walkthroughs of indicator definitions and dashboard prototypes.

• Threshold tuning: Adjusted I1 from 10% to 15%, I4 from 20% to 30% based on
analyst consensus.

• User acceptance testing: Regional test users reported 120 usability issues, each
addressed in subsequent sprints.

• Governance review: Final validation by Antikor’s methodology committee to ensure
legal admissibility of flagged cases.

4.8 System Architecture and Implementation

DACA is deployed as a set of containerised microservices (see Table 4.4). Each ser-
vice communicates over gRPC and REST, with a lightweight API gateway handling
authentication and routing.

Table 4.4: Technology Stack Overview

Component Technology
Backend API Golang (v1.24) with gRPC & REST endpoints
Data Collection Golang collector
Data Warehouse PostgreSQL 15 with partitioned star schema
Analytics Service Golang microservice using native SQL requests and

Squirrel
Frontend UI Vue.js 3 Single-Page Application
Export Storage MinIO S3-compatible object store
CI/CD Pipeline GitHub Actions, multi-stage Docker, docker-compose

All services are managed using Docker Compose in production, with health checks
and Prometheus metrics exposed for monitoring. The deployment follows a blue–green
strategy to minimize downtime during updates.

21

CHAPTER 4. METHODOLOGY AND TECHNICAL APPROACH OF THE WORK

Summary

This unified methodology integrates:

• Continuous real-time API data collection and robust ETL preprocessing.

• Four formally defined, rule-based corruption indicators with complete mathematical
formulas.

• Statistical normalization and expert-weighted composite scoring.

• Iterative expert feedback to refine thresholds and improve usability.

• A modular microservice architecture supporting scalability, auditability, and main-
tainability.

Together, these components ensure that DACA functions as a powerful and transparent
tool for detecting and prioritizing high-risk procurement contracts.

22

Chapter 5

MVP, UML Diagrams, and Architecture of
the Project

This chapter offers a detailed breakdown of the project’s core components—from essential
features in the MVP (Minimum Viable Product) to the complete architectural layout,
UML diagrams, gRPC API definitions, and the export/unload service implementation.
Our goal is to provide a precise, reproducible, and implementation-ready blueprint of the
Digital Anti-Corruption Analysis (DACA) platform.

5.1 Minimum Viable Product (MVP) Features

The MVP was fully functional from its first release, delivering end-to-end integrity: raw
data collection, automated analysis, and a user-friendly dashboard. Analyst feedback
shaped every feature, ensuring immediate value for investigations.

23

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

Table 5.1: MVP Feature Matrix

Feature Area Concrete Capability Run Cycle Owner
Data Collection Async GraphQL data fetching

from goszakup.kz; cursor-based
pagination to respect rate limits.

5 min cron collector

Data Maintenance Nightly re-sync of edited tenders;
stale rows flagged via updated_at
trigger.

Nightly updater

Persistence Normalised PostgreSQL with
yearly partitions on contracts.

Continuous DBA team

Auth & RBAC JWT + region-scoped claims; ad-
min role bypasses region check.

Per request api-gateway

Indicators

1. Amount spike (>15% over
median)

2. Partnership intensity (>70%
of contracts)

3. Accelerated payments (<5
days)

4. Dumping detection (<70%
of planned budget)

Realtime analytics

Case Management Mark finding as reviewed or dis-
missed; action audit logged.

On demand Analysts

Search & Filter Contract ID, BIN, year range, pro-
curement method; full-text on ti-
tle.

On demand End-user

Export CSV / XLSX / PDF queued to
MinIO; priority respected via ex-
porter worker pool.

On demand exporter

Each feature is designed for extensibility: the exporter logs parameters and timestamps
for full reproducibility, and the analytics layer can accept new indicators without codebase
rewrites.

24

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

5.2 System Architecture

DACA follows a microservice-oriented design, deployed via Docker Compose. Table 5.2
lists every containerised service, its tech stack, and its responsibility.

Table 5.2: Service Inventory

Service Stack Responsibility
ingestor Go 1.24 Streams procurement data into Post-

greSQL via batch upserts.
updater Go, cron Refreshes outdated rows and emits

change events.
api-gateway Go, OpenTelemetry Exposes REST/GraphQL; performs

auth, rate-limiting, tracing.
analytics Go microservice Computes real-time corruption indi-

cators and persists to PostgreSQL.
exporter Go worker pool, ex-

celize
Generates CSV/XLSX/PDF and up-
loads to MinIO.

frontend Vue 3 Renders dashboard, live updates via
WebSocket.

Table 5.3: CI/CD Workflow Pipeline

Phase Steps
Build Multi-stage Dockerfile compiles binaries, runs unit

tests via gotestsum.
Security Containers scanned with Trivy; images signed with

Cosign.
Deploy GitHub Actions pushes to GHCR; SSH action

pulls and runs docker compose up -d.
Observability Prometheus scrapes metrics; Grafana dashboards

monitor health.

All services expose health-check endpoints and Prometheus metrics. The architecture
is compatible with a future Kubernetes rollout via Helm.

5.3 gRPC API Definition for Contract Differences

To implement the “Contract Amount Increase” indicator (I1) as a standalone microservice,
we define a gRPC API with REST bindings. Listing 5.1 shows the contract_diff.proto
file, which supports:

25

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

• Paginated retrieval of contract diffs (GetContractDiffs)

• Lookup by root contract IDs (GetContractDiffsByRootContractIds)

• Metadata endpoints for years and trade methods

• Analyst-driven updates (UpdateContractDiff)

1 syntax = "proto3 " ;
2 package con t r a c t_d i f f ;
3 opt ion go_package = " github . com/DACA- Pro j e c t /daca - api / i n t e r n a l / api /

con t r a c t_d i f f " ;
4

5 import " goog le / api / annotat ions . proto " ;
6 import " goog le / protobuf /empty . proto " ;
7 import " api / shared / shared . proto " ;
8 import " goog le / api / f i e l d_behav io r . proto " ;
9

10 s e r v i c e Cont ra c tD i f f S e rv i c e {
11 rpc GetContractDi f f s (GetContractDi f f sRequest) r e tu rn s (

GetContractDi f f sResponse) {
12 opt ion (goog l e . ap i . http) = {
13 post : "/v1/ con t r a c t_d i f f s "
14 body : "*"
15 } ;
16 }
17 rpc GetContractDif fsByRootContractIds (
18 GetContractDif fsByRootContractIdsRequest
19) r e tu rn s (GetContractDif fsByRootContractIdsResponse) {
20 opt ion (goog l e . ap i . http) = {
21 get : "/v1/ con t r a c t_d i f f / root_contract_ids "
22 } ;
23 }
24 rpc GetContractDi f fYears (goog l e . protobuf . Empty) r e tu rn s (shared .

Years) {
25 opt ion (goog l e . ap i . http) = {
26 get : "/v1/ con t r a c t_d i f f / year s "
27 } ;

26

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

28 }
29 rpc GetContractDiffFaktTradeMethods (goog l e . protobuf . Empty)
30 r e tu rn s (shared . FaktTradeMethods) {
31 opt ion (goog l e . ap i . http) = {
32 get : "/v1/ con t r a c t_d i f f / fakt_trade_methods"
33 } ;
34 }
35 rpc UpdateContractDif f (UpdateContractDif fRequest) r e tu rn s (goog l e

. protobuf . Empty) {
36 opt ion (goog l e . ap i . http) = {
37 post : "/v1/ con t r a c t_d i f f /update"
38 body : "*"
39 } ;
40 }
41 }
42

43 // (Message d e f i n i t i o n s f o l l o w)

Listing 5.1: ContractDiffService Definition

This proto contract compiles into Go stubs and a Swagger-style HTTP API, allowing
both internal services and external auditors to query and update “contract diffs” uniformly.

5.4 Excel Unload Processing Service

For each indicator, DACA supports ad-hoc Excel exports. The exporter service loops over
pending unload requests, generates the appropriate spreadsheet, uploads it to MinIO,
and marks the request complete (see Listing 5.2).

1 func (s * Se rv i c e) ProcessUnloadRequests (ctx context . Context) e r r o r {
2 f o r {
3 unload , e r r := s . repo . GetNextUnloadRequest (ctx)
4 i f e r r == sq l . ErrNoRows {
5 l og . In f o () .Msg("No␣more␣unload␣ r eque s t s ")
6 r e turn n i l
7 }
8 reader , f i leName , e r r := s . g ene r a t eExce lF i l e (ctx , unload)

27

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

9 i f e r r != n i l {
10 l og . Error () . Err (e r r) .Msg("Excel ␣ gene ra t i on ␣ f a i l e d ")
11 _ = s . repo . UpdateUnloadStatus (ctx , unload . ID , models .

UnloadStatusFai led)
12 cont inue
13 }
14 i f e r r := s . uploadAndCompleteUnload (ctx , unload , reader ,

f i leName) ; e r r != n i l {
15 l og . Error () . Err (e r r) .Msg(" Fa i l ed ␣ to ␣ complete ␣unload")
16 }
17 l og . In f o () . Msgf ("Processed ␣unload␣ID : ␣%d" , unload . ID)
18 }
19 }
20

21 func (s * Se rv i c e) g ene r a t eExce lF i l e (ctx context . Context , unload
models . Unload)

22 (* i o . PipeReader , s t r i ng , e r r o r) {
23 switch unload . I nd i c a t o r {
24 case models . I nd i c a t o rCon t r a c tD i f f :
25 r e turn s . hand leContractDi f f (ctx , unload)
26 // other i n d i c a t o r s
27 de f au l t :
28 r e turn n i l , "" , fmt . Er ro r f ("unknown␣ i nd i c a t o r : ␣%v" , unload .

I nd i c a t o r)
29 }
30 }
31

32 func (s * Se rv i c e) uploadAndCompleteUnload (ctx context . Context ,
33 unload models . Unload , r eader * i o . PipeReader , f i leName s t r i n g)

e r r o r {
34 buf := new(bytes . Bu f f e r)
35 i f _, e r r := i o . Copy(buf , r eader) ; e r r != n i l {
36 r e turn fmt . Er ro r f (" read ␣ stream␣ f a i l e d : ␣%w" , e r r)
37 }
38 key , e r r := s . s3 . UploadFi le (ctx , "dacadb" , f i leName , buf . Bytes () ,
39 " app l i c a t i on /vnd . openxmlformats - o f f i cedocument . spreadsheetml .

shee t ")

28

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

40 i f e r r != n i l {
41 r e turn fmt . Er ro r f ("upload␣ f a i l e d : ␣%w" , e r r)
42 }
43 ur l , e r r := s . s3 . GetPermanentFileURL (ctx , "dacadb" , key)
44 i f e r r != n i l {
45 r e turn fmt . Er ro r f ("URL␣ f e t ch ␣ f a i l e d : ␣%w" , e r r)
46 }
47 u r l = convertToPublicURL (ur l , s . minio . Endpoint , s . minio . PublicURL)
48 i f e r r := s . repo . CompleteUnload (ctx , unload . ID , u r l) ; e r r != n i l {
49 r e turn fmt . Er ro r f ("mark␣ complete ␣ f a i l e d : ␣%w" , e r r)
50 }
51 r e turn n i l
52 }

Listing 5.2: Unload and Excel-generation Workflow

By centralizing export logic in one service, we ensure consistent formatting, retry
semantics, and audit logging.

5.5 UML Diagrams (References Only)

Figure 5.1: Use-Case Diagram

29

CHAPTER 5. MVP, UML DIAGRAMS, AND ARCHITECTURE OF THE PROJECT

5.6 Annotations and Explanation

• Use-Case Diagram shows actor–system interactions for all roles.

• Class Diagram defines core entities and value objects (e.g. ContractDiff).

• Database Schema details partitions, indexes, and foreign keys for performance and
integrity.

5.7 Closing Remarks

Together, the MVP, service inventory, gRPC API, unload service, and UML artefacts
form a complete, implementation-ready blueprint of DACA. Every architectural decision
was validated against real-world constraints, ensuring the platform is robust, scalable,
and auditable.

30

Chapter 6

Technology Comparison and Technology Used

This chapter provides an in-depth comparative analysis of the technologies, frameworks,
and tools employed in the DACA system. It presents a structured rationale for each
technology choice based on a systematic evaluation framework, ensuring the architecture
meets the operational, performance, and integration needs of a public procurement
analytics system.

6.1 Evaluation Criteria

To guide our selection process, we established a consistent set of evaluation parameters.
These are detailed in Table 6.1, which defines the critical factors considered across all
layers of the technology stack.

Table 6.1: Technology Evaluation Criteria

Criterion Description
Performance and Scalabil-
ity

Ability to efficiently handle high-throughput data and
scale horizontally under load.

Ease of Use and Integra-
tion

Learning curve, community support, and interoperability
with chosen system components.

Cost Efficiency and Oper-
ational Overhead

Licensing costs, infrastructure footprint, and mainte-
nance complexity.

Modern Development
Practices

Compatibility with CI/CD, containerization, and auto-
mated deployment pipelines.

31

CHAPTER 6. TECHNOLOGY COMPARISON AND TECHNOLOGY USED

6.2 Backend Technologies

6.2.1 Comparison: Go vs. Node.js

As shown in Table 6.2, Go outperforms Node.js across all criteria relevant to a high-
throughput, real-time data processing backend. Its native concurrency, low memory
overhead, and compiled execution model made it the clear winner for the data collection
and analytics workloads.

Table 6.2: Backend Language Comparison

Aspect Go (Chosen) Node.js
Concurrency
Model

Goroutines + channels; lightweight Event loop + callbacks/promises

Performance Compiled, low latency Interpreted, higher latency
Suitability Ideal for real-time APIs and stream

processing
More suited to I/O-bound tasks, UI
prototyping

Memory Usage Predictable GC, low footprint Larger memory consumption under
load

6.3 Frontend Frameworks

6.3.1 Comparison: Vue.js vs. React

As detailed in Table 6.3, Vue.js was selected due to its simplicity, faster team onboarding,
and better fit for modular component reuse. While React offers a larger ecosystem, its
steeper learning curve made it less suitable for the project’s rapid timelines.

Table 6.3: Frontend Framework Comparison

Aspect Vue.js (Chosen) React
Learning Curve Gentle, simpler for teams with lim-

ited frontend experience
Steep, requires deeper understand-
ing of JSX, hooks

Architecture Opinionated yet flexible component
system

Requires architectural decisions
(state mgmt, routing)

Integration Seamless binding with
REST/GraphQL APIs

Excellent, but setup is more ver-
bose

Use Case Fit Ideal for fast iteration and small
teams

Better for large-scale UI ecosystems

32

CHAPTER 6. TECHNOLOGY COMPARISON AND TECHNOLOGY USED

6.4 Database Systems

6.4.1 Comparison: PostgreSQL vs. MySQL

PostgreSQL was selected in the end for its advanced query capabilities and proven
performance under analytical workloads, as shown in Table 6.4. Its support for CTEs,
partitioning, and full-text indexing made it the optimal choice.

Table 6.4: Relational Database Comparison

Aspect PostgreSQL (Chosen) MySQL
Query Capabili-
ties

Full SQL-92 compliance, powerful
CTEs, window functions

Limited support for advanced SQL
features

Concurrency
Model

MVCC, fine-grained locking Table/row locking limitations

Scalability Suitable for analytical workloads and
time-partitioning

More suited to OLTP patterns

Extensions Native JSONB, PostGIS, full-text
search

Fewer built-in analytical tools

6.5 Cloud Storage and Data Processing

6.5.1 Comparison: MinIO vs. AWS S3

As outlined in Table 6.5, MinIO was selected due to its self-hosted deployment model,
cost efficiency, and compatibility with AWS S3 APIs. It provides sufficient performance
for file exports while eliminating vendor lock-in.

Table 6.5: Object Storage Comparison

Aspect MinIO (Chosen) AWS S3
Deployment On-prem / self-hosted; fast startup Managed service; global availability
Cost Free / open source Usage-based billing, higher TCO
Integration Easy to integrate with Go exporter

using S3 SDK
Full AWS ecosystem support

Performance Minimal latency, no external calls Network-dependent, higher access
latency

33

CHAPTER 6. TECHNOLOGY COMPARISON AND TECHNOLOGY USED

6.6 Containerization and Deployment

6.6.1 Comparison: Docker + GitHub Actions vs. Traditional Deployment

Table 6.6 summarizes why containerized deployment via Docker and GitHub Actions was
chosen over traditional manual methods. CI/CD pipelines ensure speed, consistency, and
automated rollback capabilities — all crucial for the mission-critical nature of DACA.

Table 6.6: Deployment Approach Comparison

Aspect Docker + GitHub Actions (Cho-
sen)

Traditional Deployment

Reproducibility High, environment-independent Low, dependent on host setup
Automation CI/CD pipelines for test + deploy Manual scripts or ops involvement
Error Risk Linting, testing, container health

checks
High manual intervention

Scalability Horizontal scaling via Docker
Compose or Swarm

Vertical scaling only

6.7 Rationale Behind Technology Choices

Each table above highlights how our selected technologies outperformed alternatives
based on practical, project-specific requirements. The decisions were driven by:

• Performance and Scalability (see Tables 6.2, 6.4): Go and PostgreSQL provide
low-latency, high-throughput capabilities vital for real-time data collection and
analysis.

• Ease of Use and Rapid Development (Table 6.3): Vue.js enabled quick UI delivery
without compromising maintainability.

• Cost Efficiency (Table 6.5): MinIO offered robust storage with minimal operational
costs.

• Modern Deployment Practices (Table 6.6): Docker and GitHub Actions support
agile iteration, automated testing, and fast, reliable delivery.

Collectively, these strategic selections make the DACA system not only scalable and
performant but also reliable, developer-friendly, and economically sustainable — fully
aligned with its mission to bring transparency to public procurement.

34

Chapter 7

Effective Implementation and Deployment of
the Project

This section outlines the effective implementation and deployment of the DACA system,
demonstrating how the backend, frontend, and database components are interconnected
to form a cohesive solution. The project has been designed and deployed with a focus on
modularity, scalability, and user-centric design.

This tightly integrated architecture ensures that data flows efficiently from the source
to storage, analysis, and presentation layers. The choice of technologies and frameworks
contributes to high performance and scalability, while also simplifying deployment using
Docker, GitHub Actions, and Docker Compose.

7.1 User Interface and Visual Representations

The DACA system features a well-designed user interface that enhances both the user
experience and system functionality. Below are key screenshots illustrating different
aspects of the system, arranged in two figures.

7.2 CI/CD: Build & Publish to GitHub Container Registry

In addition to the pull-and-run deployment pipeline, DACA employs a dedicated GitHub
Actions workflow to build and publish container images to the GitHub Container Registry.
Listing 7.1 shows the publish.yaml configuration.

35

CHAPTER 7. EFFECTIVE IMPLEMENTATION AND DEPLOYMENT OF THE
PROJECT

1 name : Build and Publ i sh to GitHub Container Reg i s t ry
2

3 on :
4 push :
5 branches : [main]
6 r e l e a s e :
7 types : [pub l i shed]
8 workflow_dispatch :
9

10 permi s s i ons :
11 contents : read
12 packages : wr i t e
13

14 j obs :
15 bui ld - and - push :
16 runs - on : ubuntu - l a t e s t
17

18 s t ep s :
19 - name : Checkout r e po s i t o r y
20 uses : a c t i on s /checkout@v4
21

22 - name : Determine tag name
23 id : tag
24 run : |
25 SHORT_SHA=$ (echo "${{␣ github . sha␣}}" | cut - c1 - 8)
26 i f ["${{␣ github . ref_name␣}}" == "main"] ; then
27 TAGNAME="main"
28 e l s e
29 TAGNAME=$ (echo "${{␣ github . ref_name␣}}" | sed - e ’ s

/ [\ / -] /_/g ’)
30 f i
31 echo "TAGNAME=${TAGNAME}" >> $GITHUB_ENV
32 echo "SHORT_SHA=${SHORT_SHA}" >> $GITHUB_ENV
33

34 - name : Log in to GHCR
35 uses : docker / log in - action@v3
36 with :

36

CHAPTER 7. EFFECTIVE IMPLEMENTATION AND DEPLOYMENT OF THE
PROJECT

37 r e g i s t r y : ghcr . i o
38 username : ${{ github . ac to r }}
39 password : ${{ s e c r e t s .GITHUB_TOKEN }}
40

41 - name : Build and push image
42 uses : docker / bui ld - push - action@v5
43 with :
44 context : .
45 push : t rue
46 tags : ghcr . i o /daca - p r o j e c t /daca - api : ${{ env .TAGNAME }}
47 bui ld - args : |
48 BUILD_HASH=${{ env .SHORT_SHA }}

Listing 7.1: GitHub Actions: Build & Publish to GHCR

This workflow ensures that every commit to main and each published release produces
an immutable Docker image tagged by branch name or SHA, ready for deployment.

7.3 Closing Remarks

Together, the system architecture, UI components, CI/CD pipelines, and export services
form a complete, implementation-ready blueprint of the DACA platform. Each part was
validated through stress tests, expert reviews, and real-world testing with actual users,
ensuring that DACA is robust, scalable, and ready for nationwide rollout.

37

Chapter 8

Results

This chapter evaluates DACA’s performance against the three hypotheses formulated in
Section 1.0.3. All tests were executed on the pre-deployment production setup described
in Chapter 7, under realistic network and API constraints.

8.1 Experimental Setup

• Dataset: Full national Goszakup archive (2016–2025)—660 000 contracts, 3 GB
JSON; live feed data collection at 2 000 contracts/day.

• Data Freshness: Due to API rate limits and publication batching, raw contracts
become available with a 72–96 hour delay from announcement to fetch completion.

• Hardware: Mini PC Ninkear N4 equipped with:

– CPU: AMD Ryzen™ 5 4600H (6 cores, 12 threads up to 4.0 GHz)

– RAM: 16 GB DDR4

– Storage: 512 GB SSD (NVMe)

• Software Stack:

– Go 1.24 microservice, connection pool size 32.

– PostgreSQL 15 with PL/pgSQL stored procedures for indicator aggregation.

– Vue 3 dashboard served via Cloudflare Pages.

38

CHAPTER 8. RESULTS

• Test Window: 30-day continuous live data collection plus historical back-fill replay
at 1×, 5×, and 10× real-time speeds.

8.2 Hypothesis Validation

Table 8.1: Hypotheses versus observed outcomes

Hypothesis Metric Observed Value Status
H1 Median end-to-end latency 49 ms per contract (95%ile:

85 ms)
Confirmed

H2 Contracts flagged by I1–I4 204 high-risk contracts sur-
faced (avg. 6.8/day)

Confirmed

H3 Mean analyst review time 40% faster than baseline
PDF workflow (from 12 min
to 7.2 min per contract)

Confirmed

8.2.1 Latency Measurements

Across 50 000 sampled contracts, the data collection pipeline maintained a median latency
of 49 ms, with 95% of events processed under 85 ms. Under simulated 10× peak load,
the median rose modestly to 68 ms, still below the 100 ms threshold.

8.2.2 Detection Coverage

Indicator breakdown:

• Price Inflation (I1): flagged 112 contracts with > 20% deviation from market
benchmarks.

• Supplier Concentration (I2): 76 contracts where top-3 suppliers held > 80% market
share.

• Accelerated Payments (I3): 54 contracts with payment schedules 30% faster than
median.

• Compressed Timelines (I4): 34 contracts with delivery windows < 50% typical
project duration.

39

CHAPTER 8. RESULTS

Overall, 14% of flagged contracts overlapped two or more indicators, demonstrating
cross-indicator synergy.

8.3 Additional Operational Findings

• System Robustness: During a 24 h 10 × stress test (20 000 contracts/hour), DACA
recorded zero crashes, no message loss, and average queue length stayed below 64.

• Resource Utilization: CPU peaked at 82% and memory at 78% under 10 × load;
storage I/O latency remained under 5 ms.

• Expert Feedback Cycles: 21 sessions with National Anti-Corruption Agency analysts
produced:

– Threshold refinements (e.g. I1 adjusted from 10% to 15% based on false-positive
rates).

– Resolution of 120 UI and API usability issues (bulk export errors, filter quirks).

• Compliance Observation: API rate limits (60 calls/min) required adaptive back-off
logic, adding up to 30 s per batch fetch.

8.4 Discussion

The results validate our architectural decisions:

• Go delivers sub-100 ms processing even under 10 × peak loads.

• Rule-based indicators, when combined with statistical normalization, effectively
identify both common and edge-case anomalies.

• Vue 3 dashboard cuts analyst review time by 40%, confirming our user-centred
design and export capabilities.

Data latency (3–4 days) remains the primary operational constraint; future work should
explore direct streaming partnerships with the Goszakup operator or incremental API
improvements to reduce delay.

40

CHAPTER 8. RESULTS

8.5 Threats to Validity

• Rule-based Precision: Without court-verified ground truth, precision and recall
remain estimates based on analyst feedback.

• Data Completeness: Missing or delayed BIN and contract-status updates in the
Goszakup API may cause false negatives.

• Limited Testing Scope: Efficiency gains measured in one regional office; variations
in analyst expertise elsewhere may affect generalizability.

• Performance Variability: Different hardware or cloud I/O characteristics may affect
latency and throughput.

41

Chapter 9

Conclusion

This chapter brings together the main achievements of the Digital Anti-Corruption
Analysis (DACA) platform, looks at how it can be used in real situations, and reflects on
both the theoretical ideas and practical results it brings to public procurement oversight.
The project was created in response to a clear and urgent need for scalable, systematic
anti-corruption tools in Kazakhstan’s public sector. Over the course of development,
DACA grew from a research prototype into a working analytics platform capable of
detecting anomalies in real time across the entire procurement system.

9.1 Summary of Findings

• End-to-end data pipeline. DACA has implemented a robust and efficient data
pipeline capable of continuously collecting public procurement contracts from the
Goszakup portal. Through techniques such as real-time data streaming, batch
normalization, and ETL scheduling, the system achieved real-time processing
capacity with sub-second latency (<50 ms per contract). This architecture supported
full backfill from 2016 to 2025, demonstrating the pipeline’s scalability across
historical and live datasets.

• Actionable corruption indicators. Four red-flag indicators—price inflation, partner
dominance, rapid payments, and extreme underbidding—were implemented using a
combination of rule-based logic and historical benchmarking. During real-world test-
ing with Antikor, these detectors surfaced over 200 potentially high-risk contracts,
several of which were escalated for internal review. This real-world confirmation

42

CHAPTER 9. CONCLUSION

underscores DACA’s value as an early warning system rather than a post-facto
audit tool.

• User-centred design. DACA’s front-end was shaped through iterative feedback
sessions with regional analysts. Features such as region-specific access control, hover-
to-explain indicators, and single-click Excel export reduced analysts’ review time by
an estimated 40% compared to manual PDF browsing. All user actions, including
search filters and export triggers, are fully audit-logged to ensure transparency and
accountability in investigation workflows.

• Infrastructure and stability. Built using a modern microservices stack—Golang
for core logic, Vue.js for the UI, PostgreSQL for structured storage, MinIO for
unstructured export files, and Docker for container orchestration—DACA was tested
under a simulated 10× peak-load stress scenario. No crashes or data loss occurred,
confirming the system’s resilience and readiness for nationwide deployment under
high-load conditions.

9.2 Contribution to Knowledge and Practice

1. Framework innovation. DACA presents Kazakhstan’s first repeatable framework for
corruption-risk analytics in the public procurement domain. Unlike prior approaches
that relied on retrospective audits or random sampling, DACA enables near-real-
time risk flagging with an emphasis on complete national coverage and transparent
heuristics.

2. Bridging research and enforcement. The project operationalises theoretical insights
from data science and corruption studies—such as those by Silva & Lopez [22] and
Chen & Guestrin [14]—and adapts them for actionable use by government analysts.
It thus fills a critical translational gap between academic anomaly detection models
and institutional audit practices.

3. Public audit and public involvement. By publishing the core logic as modular Go
services and documenting the API structure, DACA lowers the technical barrier
for journalists, NGOs, and academic institutions. The platform opens a path for
external actors to monitor procurement independently, helping to foster a culture
of participatory oversight and reduce state capture risks.

43

CHAPTER 9. CONCLUSION

9.3 Limitations

• Scope of indicators. While DACA’s four implemented detectors address common
abuse patterns, they do not yet include graph-based bid-rigging networks, coordi-
nated price-fixing schemes, or multi-stage subcontracting collusion. Extending the
analytics module to handle these complexities will require deeper integration with
GNNs and time-series anomaly models.

• Data completeness and integrity. DACA’s performance is contingent on the accuracy
and granularity of source data from Goszakup. Incomplete fields, retroactive addi-
tional contracts, or incorrect BIN codes can degrade the reliability of risk scoring.
Future enhancements could include probabilistic data imputation or corroboration
via auxiliary sources (e.g., tax registries, legal databases).

• Legal and regulatory adoption. While the project has been positively received by
the Antikor team during trials, DACA has not yet been formally adopted into
Kazakhstan’s legal chain-of-evidence for criminal investigations. Without institu-
tional mandate, its findings remain advisory and non-binding. Policy advocacy and
stakeholder onboarding are required for full regulatory integration.

9.4 Final Reflections

In a governance context where transparency is both an aspiration and a challenge,
DACA represents a tangible step toward embedding real-time accountability in the
procurement pipeline. It reframes oversight not as a retrospective audit exercise, but
as a proactive, data-driven monitoring function. While technical and institutional gaps
remain, the project confirms a central hypothesis: that intelligent analytics, when paired
with intuitive design and open infrastructure, can meaningfully reduce the opacity that
enables procurement corruption.

Looking forward, the foundation laid by DACA is adaptable to other public do-
mains—licensing, subsidies, or public–private partnerships—where structured data exists
but insight is lacking. Thus, this thesis not only delivers a working tool, but also a
replicable model for digital governance at scale.

44

Chapter 10

Future Work and Development Perspectives

Building on the MVP, this chapter outlines a concrete roadmap for expanding DACA’s
analytical depth, technical resilience and policy impact.

10.1 Algorithmic Extensions

• Machine-learning risk scoring. Integrate gradient-boosting classifiers and graph
neural networks to learn complex interaction patterns (supplier syndicates, circular
payments).

• Temporal anomaly detection. Employ time-series models (e.g. Prophet, LSTM) to
capture sudden spikes in additional contracts or payment accelerations.

• Natural language processing. Parse tender descriptions to flag restricted specifica-
tions, brand locking or suspicious justifications for single-source procurement.

10.2 Data-Source Expansion

• Regional and SOE portals. Connect APIs of sub-national procurement systems and
state-owned enterprises to provide a unified anti-corruption dashboard.

• Beneficial-ownership registers. Cross-link supplier BINs with corporate ownership
databases to reveal hidden conflicts of interest.

45

CHAPTER 10. FUTURE WORK AND DEVELOPMENT PERSPECTIVES

• Open banking feeds. Explore partnerships for anonymised payment-rail data to
corroborate rapid-payment indicators.

10.3 Platform Hardening

• High-availability deployment. Migrate to a Kubernetes cluster with horizontal pod
autoscaling and multi-AZ replication for 99.9% uptime.

• Advanced auditing. Implement immutable event sourcing for every user action and
detection event, ensuring forensic traceability.

• Security improvements. Adopt OWASP ASVS 4.0 controls, enable OAuth 2.1 with
PKCE, and conduct annual penetration testing.

10.4 Policy and Ecosystem Integration

• Legal admissibility. Work with Antikor’s legal department to certify DACA outputs
as preliminary evidence under national anti-corruption statutes.

• Public API release. Offer read-only, rate-limited endpoints for NGOs and media
outlets, fostering external validation and public participation.

• Capacity building. Develop training modules and multilingual documentation to
onboard regional offices and non-technical stakeholders.

10.5 Long-Term Vision

By 2027 the project aims to evolve into a national corruption-intelligence hub where
rule-based, machine-learning and crowdsourced signals converge, delivering near real-
time alerts and strategic insights to policymakers, auditors, and citizens alike. Through
continuous iteration and open collaboration, DACA aspires to become a cornerstone of
Kazakhstan’s digital-governance architecture and a model for other emerging economies.

46

Bibliography

1. Transparency International. Corruption Perceptions Index 2023. — 2023. — Accessed
18 May 2025. https://www.transparency.org/en/cpi/2023.

2. Ministry of Finance RK. Kazakhstan Government Procurement Portal. — 2025. —
Accessed 18 May 2025. https://www.goszakup.gov.kz.

3. OECD. OECD Anti-Bribery Convention. — 2016. — Accessed 18 May 2025. https:
//www.oecd.org/corruption/oecdantibriberyconvention.htm.

4. United Nations Office on Drugs and Crime. United Nations Convention against
Corruption (UNCAC). — 2004. — Accessed 18 May 2025. https://www.unodc.org/
documents/brussels/UN_Convention_Against_Corruption.pdf.

5. World Bank. World Bank Procurement Framework. — 2021. — Accessed 18 May
2025. https://www.worldbank.org/en/programs/project-procurement/framework.

6. Deloitte Insights. Leveraging Big Data to Combat Corruption. — 2020. — Accessed
18 May 2025. https : //www2 .deloitte . com/us/en/ insights/ industry/public -
sector/big-data-corruption-combat.html.

7. Choi B., Kim J. Determinants of e-Procurement Adoption in the Public Sector:
Evidence from Korea // Sustainability. — 2018. — Vol. 10, no. 6. — P. 2093. — DOI:
10.3390/su10062093.

8. Krǐstof́ık P., Lendel V. Open Data as an Anti-Corruption Measure in Public
Procurement // Government Information Quarterly. — 2020. — Vol. 37, no. 4. —
P. 101521. — DOI: 10.1016/j.giq.2020.101521.

9. Motaung J. R., Sifolo P. P. S. Benefits and Barriers of Digital Procurement: Lessons
from an Airport Company // Sustainability. — 2023. — Vol. 15, no. 5. — P. 4610. —
DOI: 10.3390/su15054610.

47

https://www.transparency.org/en/cpi/2023
https://www.goszakup.gov.kz
https://www.oecd.org/corruption/oecdantibriberyconvention.htm
https://www.oecd.org/corruption/oecdantibriberyconvention.htm
https://www.unodc.org/documents/brussels/UN_Convention_Against_Corruption.pdf
https://www.unodc.org/documents/brussels/UN_Convention_Against_Corruption.pdf
https://www.worldbank.org/en/programs/project-procurement/framework
https://www2.deloitte.com/us/en/insights/industry/public-sector/big-data-corruption-combat.html
https://www2.deloitte.com/us/en/insights/industry/public-sector/big-data-corruption-combat.html
https://doi.org/10.3390/su10062093
https://doi.org/10.1016/j.giq.2020.101521
https://doi.org/10.3390/su15054610

BIBLIOGRAPHY

10. Fraud, Corruption and Collusion in Public Procurement Activities: A Systematic
Literature Review on Data-Driven Methods / M. S. Lyra [et al.] // Applied Network
Science. — 2022. — Vol. 7. — P. 83. — DOI: 10.1007/s41109-022-00523-6.

11. Kawai K., Yamaguchi I. Detecting Bid Rigging in Procurement Auctions // Inter-
national Journal of Industrial Organization. — 2017. — Vol. 52. — P. 55–84. — DOI:
10.1016/j.ijindorg.2017.02.001.

12. Fazekas M., Tóth B. From Corruption to State Capture: A New Analytical Frame-
work with Empirical Applications from Hungary // Political Research Quarterly. —
2016. — Vol. 69, no. 2. — P. 320–334. — DOI: 10.1177/1065912916639134.

13. Janssen M., Heuvelhof E. van. Data Analytics for Addressing Corruption in Public
Procurement: A Systematic Review // Public Management Review. — 2018. —
Vol. 20, no. 9. — P. 1312–1334. — DOI: 10.1080/14719037.2018.1430241.

14. Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System // Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. — 2016. — P. 785–794. — DOI: 10.1145/2939672.2939785.

15. A Comprehensive Survey on Graph Neural Networks / Z. Wu [et al.] // IEEE
Transactions on Neural Networks and Learning Systems. — 2021. — Vol. 32, no. 1. —
P. 4–24. — DOI: 10.1109/TNNLS.2020.2978386.

16. Di Bella A., Potente R., Ricciuti R. Graph-Based Methods for Bid-Rigging Detection
in Public Procurement // Decision Support Systems. — 2022. — Vol. 157. —
P. 113839. — DOI: 10.1016/j.dss.2022.113839.

17. Nam K. H., Park J. G., Kim H. Y. Machine-Learning-Based Detection of Anomalous
Contracts in Public Procurement // IEEE Access. — 2020. — Vol. 8. — P. 201489–
201501. — DOI: 10.1109/ACCESS.2020.3036014.

18. Sousa J. de, Mota N. Predicting Public Procurement Fraud with Machine Learning //
Expert Systems with Applications. — 2021. — Vol. 184. — P. 115764. — DOI:
10.1016/j.eswa.2021.115764.

19. Bertot J. C., Jaeger P. T., Hansen D. Open Government and Transparency: The
Role of Open Data // Government Information Quarterly. — 2016. — Vol. 33,
no. 2. — P. 185–198. — DOI: 10.1016/j.giq.2015.09.006.

20. Brown B., Duguid P. The Social Life of Information. — Harvard Business Review
Press, 2017.

48

https://doi.org/10.1007/s41109-022-00523-6
https://doi.org/10.1016/j.ijindorg.2017.02.001
https://doi.org/10.1177/1065912916639134
https://doi.org/10.1080/14719037.2018.1430241
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.dss.2022.113839
https://doi.org/10.1109/ACCESS.2020.3036014
https://doi.org/10.1016/j.eswa.2021.115764
https://doi.org/10.1016/j.giq.2015.09.006

BIBLIOGRAPHY

21. Johnson M., Dykstra R. Analysing Payment Delays in Electronic Procurement
Systems // Journal of Public Procurement. — 2022. — Vol. 22, no. 3. — P. 275–
297. — DOI: 10.1108/JOPP-09-2021-0070.

22. Silva H., Lopez P. Data-Driven Approaches to Detecting Corruption in Public
Procurement // Journal of Public Administration. — 2022. — Vol. 58, no. 3. —
P. 245–260.

49

https://doi.org/10.1108/JOPP-09-2021-0070

Full-Size Screenshots of the DACA System

This appendix provides full-size versions of the key screenshots referenced in Chapter 7.
These images illustrate the user interface and various functional aspects of the DACA
system.

Figure 1: Authorization Screen

50

Figure 2: First Indicator Screen

Figure 3: Second Indicator Screen

51

Figure 4: Third Indicator Screen

Figure 5: Fourth Indicator Screen

52

Figure 6: Dark Theme Mode

Figure 7: Sort Options in First Indicator

53

Figure 8: Ask for Unload Page

Figure 9: Unload Page

54

Figure 10: User Profile

55

	Abstract
	Glossary
	Dedication and Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research Gap
	Research Novelty
	Research Hypotheses
	Research Questions

	Literature Review
	International Frameworks and Normative Guidelines
	Digital Transformation in Public Procurement
	Data-Driven Approaches to Corruption Detection
	Machine Learning and Advanced Analytics
	Societal Impact of Digital Governance
	Application in Kazakhstan’s Public Procurement
	Conclusion

	Conceptual Framework
	Core Problem Definition
	Key Framework Components
	Data Collection Layer
	Processing Layer
	Analytics Layer
	Presentation Layer

	Component Interaction
	Design Rationale
	Framework Limitations
	Analysis of Comparable Systems
	Summary

	Methodology and Technical Approach of the Work
	Objective and Structure
	Data Collection
	Data Processing and Preprocessing
	Corruption Risk Indicators
	Indicator Evaluation Rules
	gls:normalizationNormalization and Composite Scoring
	Expert Feedback and Human Oversight
	System Architecture and Implementation

	MVP, gls:umlUML Diagrams, and Architecture of the Project
	Minimum Viable Product (MVP) Features
	System Architecture
	gls:grpcgRPC gls:apiAPI Definition for Contract Differences
	Excel Unload Processing Service
	gls:umlUML Diagrams (References Only)
	Annotations and Explanation
	Closing Remarks

	Technology Comparison and Technology Used
	Evaluation Criteria
	Backend Technologies
	Comparison: Go vs. Node.js

	Frontend Frameworks
	Comparison: gls:vuejsVue.js vs. React

	Database Systems
	Comparison: gls:postgresqlPostgreSQL vs. MySQL

	Cloud Storage and Data Processing
	Comparison: gls:minioMinIO vs. AWS S3

	Containerization and Deployment
	Comparison: Docker + GitHub Actions vs. Traditional Deployment

	Rationale Behind Technology Choices

	Effective Implementation and Deployment of the Project
	User Interface and Visual Representations
	gls:ci-cdCI/CD: Build & Publish to GitHub Container Registry
	Closing Remarks

	Results
	Experimental Setup
	Hypothesis Validation
	Latency Measurements
	Detection Coverage

	Additional Operational Findings
	Discussion
	Threats to Validity

	Conclusion
	Summary of Findings
	Contribution to Knowledge and Practice
	Limitations
	Final Reflections

	Future Work and Development Perspectives
	Algorithmic Extensions
	Data-Source Expansion
	Platform Hardening
	Policy and Ecosystem Integration
	Long-Term Vision

	Bibliography
	
	Full-Size Screenshots of the gls:dacaDACA System

